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Anesthetic Postconditioning in Acute Brain Injury—
Anesthetics beyond Anesthesia
Tingting Huang1*, Yan Li1*, Peiying Li1

Acute brain injuries like ischemic stroke, traumatic brain injury and intracerebral hemorrhage, if not 
treated properly, can leave behind sensory, motor and cognitive functional impairments, which can 
seriously affect the quality of life of patients. Considerable progress has been made in the treatment 
of these diseases, including endovascular thrombectomy, and decompressive craniotomy. However, 
due to their devastating impact on neurological outcomes, investigation into the management of 
acute brain injuries still warrants further attention. Anesthetic postconditioning is emerging as a 
promising therapeutic strategy for various forms of acute brain injury. The advantages of anesthetic 
postconditioning include (1) easy accessibility, (2) high controllability and its great effect on balancing 
metabolic demand, glutamatergic and GABAergic tone, controlling cortical spreading depression, 
neuroinflammation and ROS generation in the injured brain, which are all important pathological 
features of acute brain injuries. The advances in anesthesiology, including the development of new 
anesthetic agents and the innovation of anesthetic drug delivery system, could contribute to the clinical 
translation of anesthetic postconditioning in the early management of acute brain injury in an effort to 
further improve neurological outcomes. 
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Introduction
Ischemic stroke, traumatic brain injury (TBI) and intracranial 
hemorrhage (ICH) are three common acute brain injuries that 
can be life-threatening and cause long-lasting or even permanent 
neurological symptoms, such as unconsciousness and sensory, 
motor and cognitive dysfunctions. Ischemic stroke is the fourth 
leading cause of death in the United States and second only 
to ischemic heart disease worldwide (Benjamin et al., 2017). 
TBI impacts 2.5 million people in the United States each year, 
leading to 5.3 million Americans with lifelong neurological 
deficits (Wilson et al., 2017). Primary ICH accounts for 85% 
of ICH and it affects 4 million people globally (Palm et al., 
2013), with 30-day mortality as high as 40-50% (Kuramatsu et 
al., 2013). Although increased attention has been paid to these 
catastrophic brain injuries and new invasive procedures and 
surgical techniques have been developed, patient management 
remains a huge challenge in clinical practice. 

Novel strategies that offer neuroprotection against acute 
brain injury are emerging that facilitate neurological recovery. 
Among these strategies, anesthetic postconditioning is a 

promising intervention with high clinical translation, as no 
prior knowledge of the ischemic event is required to provide 
effective protection. Postconditioning, typically referred to as 
ischemic postconditioning, was originally described by Zhao 
et al. (2003) to protect against prolonged myocardial ischemia 
by introducing several cycles of coronary occlusion/reperfusion 
after a sustained ischemic insult (Zhao et al., 2003; Kin et al., 
2004). It can be elicited by brief episodes of ischemia or by 
administration of pharmacological agents, such as anesthetics. 
The protective effect of anesthetic postconditioning was first 
observed against cardiac ischemic and reperfusion injury in 
2003 after administration of 1 minimum alveolar concentration 
(MAC) of sevoflurane during the first two minutes of 
reperfusion (Obal et al., 2003). Soon this effective protective 
strategy was used to treat acute brain injuries, including 
ischemic reperfusion injury, TBI and ICH. Here, we review 
the pathological changes shared by these acute brain injuries 
that are emerging as good therapeutic targets of anesthetic 
postconditioning, such as metabolic impairment, imbalanced 
glutamatergic and γ-aminobutyric acid (GABA)-ergic tone 
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and cortical spreading depression. In addition, the advances 
in anesthetic agents and anesthetic delivery systems are also 
reviewed in an attempt to discuss the translational potential of 
anesthetic postconditioning in the clinical management of acute 
brain injury. 

1. Acute brain injuries that could potentially benefit from
anesthetic postconditioning
The management of acute ischemic stroke, especially 
mechanical thrombectomy, has evolved significantly during 
the past two decades (Berkhemer et al., 2015; Campbell et 
al., 2015; Saver et al., 2015). The thrombectomy procedure 
may require general anesthesia or conscious sedation, thus 
allowing early access of stroke patients to anesthetics. Both 
TBI and ICH have a common characteristic feature, cerebral 
edema, which can lead to increased intracranial pressure and 
cerebral ischemia, further promoting secondary injury and 
herniation of the brainstem down through the base of the skull. 
The cerebral edema may require surgical decompression, 
which would increase the likelihood that patients would be 
exposed to anesthetics early on, thereby receiving anesthetic 
postconditioning. Therefore, the three most common types of 
brain injury all have a high probability for surgical procedure 
intervention, with early access by patients to anesthetics and 
any accompanying protective postconditioning effects 

With or without surgery, all acute brain injuries can 
potentially benefit from anesthetic postconditioning, which has 
the advantage of being highly effective and easily administered. 
The neuroprotective mechanisms underlying anesthetic 
postconditioning may target the aforementioned pathological 
changes observed in acute brain injuries, and will be discussed 
below (Figure 1).

2. Therapeutic targets of anesthetics in acute brain injury
1) Metabolic impairments in the pathogenesis of acute brain
injury
All acute brain injuries are associated with impairments in 
energy metabolism, resulting in disturbed ionic homeostasis, 
mitochondrial defects, hypoxia and inflammation (Carpenter 
et al., 2015; Guglielmetti et al., 2017; Simon et al., 2017). 
Microdialysis of brain metabolites, metabolomics or indirect 
measurement of arterio-venous metabolite concentrations 
demonstrated that injured brain tissue is characterized by high 
lactate levels, a high lactate/pyruvate ratio, altered glycolysis 
and purine metabolism (Gallagher et al., 2009; Jalloh et al., 
2013; Carpenter et al., 2014; Lama et al., 2014; Koronowski 
et al., 2017; Koronowski et al., 2018). Studies using non-
invasive proton magnetic resonance spectroscopy (H-MRS) 
revealed elevated lactate concentration in patients following 
brain injury and the level of lactate correlated with poor 
prognosis, cognitive decline and high mortality (Makoroff et 
al., 2005; Timofeev et al., 2011; Sala et al., 2013). With the 
development of in vivo real-time imaging, hyperpolarized 13C 
magnetic resonance spectroscopic imaging (HP 13C MRSI) 
has emerged as a clinically translatable neuroimaging method 
that notably improves the detection of metabolic conditions by 
monitoring the increased conversion of HP [1-13C] pyruvate 
to HP [1-13C] lactate under aerobic conditions. Using this new 
technique, it has been recently shown that there is an increased 
HP [1-13C] lactate-to-pyruvate conversion, which indicates 
mitochondrial dysfunction, and decreased activity of pyruvate 
dehydrogenase (PDH), the enzyme that converts pyruvate to 
Acetyl-coenzyme A (CoA), in the injured cortex at acute time 
points prior (4 hours) and also at acute (12 and 24 hours) and 
subacute (7 days) time points following TBI (DeVience et 
al., 2017; Guglielmetti et al., 2017). In ischemic stroke, the 
penumbra of stroke patients is a metabolically active region 
with reduced cerebral blood flow, characterized by an increased 

oxygen extraction fraction and preserved oxygen consumption 
(Marchal et al., 1993; Baron, 1999), thus metabolism switches 
from aerobic to anaerobic glycolysis, producing lactate. Now, 
using 1H magnetic resonance spectroscopy (MRS), changes in 
lactate levels in the ischemic region can be detected (Holmes 
et al., 2012). Using Xenon-enhanced computed tomography 
or computed tomography perfusion for cerebral blood flow 
(CBF), it was confirmed that the lactate/pyruvate ratio was 
persistently elevated in the perihemorrhagic zone compared to 
the seemingly normal cortical region (Tobieson et al., 2018). 
Further, increased acidosis is associated with increased cerebral 
ischemic brain injury, which can be observed in recurrent 
hypoglycemia exposed insulin treated diabetic rats (Rehni et 
al., 2018; Shukla et al., 2018). Thus, metabolic disturbances 
characterized by increased lactate/pyruvate ratio represent one 
of the important pathological changes of acute brain injuries.

There are several ways to combat the metabolic changes 
following acute brain injury. First, continued maintenance 
of aerobic metabolism is key to the survival of tissue since 
it is significantly more efficient at producing adenosine 
triphosphate (ATP) than anaerobic metabolism. Hence, it is 
critical to decrease the metabolism of the injured brain to 
salvage the tissue at risk. Notably anesthetic postconditioning 
is a good therapeutic choice for acute brain injury because 
it could effectively decrease brain metabolism (Alkire et al., 
1995; Alkire, 1998; Bonhomme et al., 2001; Kaisti et al., 
2002; Kaisti et al., 2003; Jeong et al., 2006; Schlunzen et al., 
2012). Different anesthetics produce different characteristic 
effects on brain metabolism and CBF. Sevoflurane, a widely 
used inhalation anesthetic, decreases cerebral metabolism 
more than CBF (Kaisti et al., 2002; Kaisti et al., 2003; 
Jeong et al., 2006), while propofol induces a proportional 
decrease in both brain metabolism and CBF (Alkire et al., 
1995; Alkire, 1998; Bonhomme et al., 2001; Schlunzen et 
al., 2012). Dexmedetomidine, an α2-adrenoceptor agonist, 
which induces sufficient sedation while allowing patient 
arousal, can significantly reduce the glucose metabolism rate. 
Furthermore, the suppressive effect of dexmedetomidine is 
even stronger than propofol (Laaksonen et al., 2018). It can 
also produce a 33% global decrease of CBF from baseline 
(Zornow et al., 1993; Prielipp et al., 2002). It was suggested 
that the cerebral metabolic rate and CBF coupling is preserved 
during dexmedetomidine administration in healthy volunteers 
(Drummond et al., 2008). 

Second, direct suppression of the metabolic rate by 
inducing a “hibernation-like state” is also an intriguing 
choice to achieve neuroprotection against acute brain injury. 
Hibernation, also termed torpor, is a state of inactivity and 
metabolic depression in endotherms during winter seasons to 
conserve energy when sufficient food is unavailable (Dave 
et al., 2012; Geiser, 2013). During hibernation, metabolic 
rate can be reduced as low as 1%, CBF dropped to 10% and 
glucose utilization to 2% of active state (Storey and Storey, 
2010; Geiser, 2013). This hypometabolism allows animals in 
deep torpor to withstand drastic fluctuations in CBF without 
causing damage to the brain in case of stroke and TBI (Zhou 
et al., 2001; Dave et al., 2012). Brains of torpor animals, such 
as arctic ground squirrels are remarkably tolerant to global 
cerebral ischemia during euthermia (Zhou et al., 2001; Dave 
et al., 2012). Therefore, an artificially induced “hibernation-
like” state is a promising strategy to protect against acute brain 
injuries, such as stroke and TBI. There are several methods 
that induce a neuroprotective hibernation-like state, including 
therapeutic hypothermia, anesthetics, ethanol, ischemic 
preconditioning (Stenzel-Poore et al., 2003; Thompson et al., 
2013a) and resveratrol preconditioning (Koronowski et al., 
2015; Khoury et al., 2016). Resveratrol preconditioning offers 
a wide therapeutic intervention window through activation of 
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nuclear factor erythroid-2 related factor 2 (Nrf2), an astrocyte-
enriched transcription factor that has previously been shown to 
upregulate cellular antioxidant systems in response to ischemia 
(Narayanan et al., 2015; Narayanan et al., 2018). Notably, a 
number of anesthetic agents are excellent candidates to induce 
artificial hibernation, including isoflurane, sevoflurane and 
propofol. Each of these anesthetic agents has been confirmed 
to reduce cerebral metabolic rates (Alkire et al., 1995; Alkire, 
1998; Bonhomme et al., 2001; Kaisti et al., 2002; Kaisti et al., 
2003; Jeong et al., 2006; Schlunzen et al., 2012). 

Finally, sirtuins are emerging as important targets for 
neuroprotection after cerebral ischemia (Thompson et al., 
2013b; Koronowski and Perez-Pinzon, 2015; Morris-Blanco et 
al., 2016; Koronowski et al., 2017; Koronowski et al., 2018). 
Sirtuins are a family of nicotinamide adenine dinucleotide 
(NAD+)-dependent deacetylases with homology to the 
yeast silent information regulator 2 (Sir2). There are seven 
mammalian members of the sirtuin family (SIRT1–7), which 
localize to different subcellular compartments. Among these 
sirtuins, mitochondrial SIRT1 has been suggested to modulate 
mitochondrial function and to regulate glycolysis after global 

cerebral ischemia (Thompson et al., 2013b; Koronowski and 
Perez-Pinzon, 2015). SIRT5 regulates oxygen consumption 
in the mitochondria and modulates purine metabolism (urea, 
adenosine, adenine, xanthine), nitrogen metabolism (glutamic 
acid, glycine), and malate-aspartate shuttle (malic acid, 
glutamic acid) after focal ischemia (Morris-Blanco et al., 2016; 
Koronowski et al., 2018). Therefore, both SIRT1 and SIRT5 are 
promising therapeutic targets through which neuroprotection 
can be achieved via metabolic regulation. Previous studies have 
demonstrated that SIRT1 and SIRT5 play important roles in the 
metabolic regulation and neuroprotection afforded by ischemic 
preconditioning and resveratrol preconditioning in ischemic 
brain injury (Thompson et al., 2013b; Koronowski and Perez-
Pinzon, 2015; Morris-Blanco et al., 2016; Koronowski et al., 
2017; Koronowski et al., 2018). However, currently, there is 
no evidence that anesthetic agents influence the activity of 
SIRT1 and SIRT5, making this an intriguing direction for future 
investigation.

2) Imbalanced glutamatergic and GABAergic tone in the brain
after acute brain injury
In the brain, there are excitatory and inhibitory neurotransmitters 
that balance each other to maintain normal neurologic function. 
Glutamate is the principle excitatory neurotransmitter and 
GABA is the primary inhibitory neurotransmitter. Glutamate 
is synthesized from glutamine in presynaptic glutamatergic 
neurons, after which it is stored in presynaptic vesicles, and 
released into the synaptic cleft by a depolarizing current. It 
acts on ionotropic or metabotropic G-protein coupled receptors 
to induce an intracellular signaling cascade. The ionotropic 
receptors include N-methyl-D-aspartate (NMDA), alpha-amino-
3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and
kainate receptors.

In the early phase of acute brain injury, such as TBI, the 
immediate glutamate release sets off a series of metabolic 
cascades, subsequently leading to excitotoxicity and eventually 
to cell death (Zlotnik et al., 2012; Goodrich et al., 2013). 
This cell death leads to functional impairments, including 
hypoperfusion due to failure in cerebrovascular autoregulation, 
edema via accumulation of intracellular Na+, glutamate-induced 
excitotoxicity, epileptogenesis, and cognitive decline (Smith et 
al., 1993; Obrenovitch and Urenjak, 1997; Zlotnik et al., 2012). 
Decreasing acute glutamate excitotoxicity has been widely 
accepted to provide neuroprotection against acute brain injury, 
including stroke and TBI. Indeed, removing glutamate from 
the synapse has been suggested to provide neuroprotection 
(Zlotnik et al., 2012; Goodrich et al., 2013). In contrast, high 
levels of glutamate release have been demonstrated in acute 
ischemic stroke (Davalos et al., 1997) or ICH (Liu and Sharp, 
2012). Inhibiting glutamate release by using antioxidants, or 
granulocyte-colony stimulating factor provides neuroprotection 
against stroke (Hurtado et al., 2003; Han et al., 2008; Dohare 
et al., 2014). Decreasing the glutamate receptor AMPAR 
currents by protein kinase C epsilon (PKCɛ) activation confers 
neuroprotection against global cerebral ischemia (Cohan et al., 
2017).

GABA is the principle inhibitory neurotransmitter in the 
central nervous system and is synthesized from glutamate by 
glutamate decarboxylase (GAD). It is also stored in presynaptic 
vesicles and is released onto postsynaptic terminals and acts on 
GABA receptors located on dendritic projections, axons or axon 
terminals. There are two types of GABA receptors, GABAA 
and GABAB. GABAA are ionotropic receptors that cause Cl- 
channel opening and GABAB are metabotropic G-protein 
coupled receptors. GABAA receptors contain at least 16 subunits 
among which, the α1, γ2, α4 and δ1 receive the most attention 
in TBI research. After TBI, down-regulation of the ε- and 
θ-subunits of the GABAA receptor correlates with susceptibility 
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Figure 1. Common features in the pathogenesis of acute brain 
injury. ① After acute brain injury, there is an increased lactate-
to-pyruvate ratio, which indicates mitochondrial dysfunction and 
aerobic to anaerobic glycolysis of the cells in the injured brain. 
② Glutamate, an excitatory neurotransmitter, induces excitotoxicity
and an influx of Na+ by acting on NMDA/AMPA receptors. GABA
an inhibitory neurotransmitter, induces the influx of Cl- by acting
on GABA-A/B receptors. ③ CSD induces the release of glutamate,
promotes the influx of Ca2+ and Na+ then induces derangement
of the ionic environment. CSD also elevates ATP consumption
and causes mitochondrial dysfunction. ④ Resident glia cells and
infiltrating peripheral immune cells can be activated after acute
brain injury resulting in neuroinflammation. ⑤ After acute brain
injury, voltage-gated Ca2+ channels are activated that accelerates
the collapse of electron transport chain complexes in mitochondria,
thus generating excessive ROS. NMDA, N-methyl-d-aspartate; AMPA,
alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; GABA,
Gamma-aminobutyric acid; CSD, cortical spreading depression; ATP,
adenosine triphosphate.
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to post-traumatic epileptogenesis (Huusko and Pitkanen, 2014). 
Immunoreactivity of the GABAA receptor α1 subunit was 
significantly decreased in the ipsilateral thalamus 5-6 days after 
TBI, and it was further decreased in the cortical lesion area and 
thalamus at 40-42 days after TBI. These data correlate with 
the reduction in the GABAA signal measured using ex vivo 
autoradiography with 18F-GE-194 (Lopez-Picon et al., 2016). 
There are differential alterations in tonic and phasic GABAA 
receptor currents in hippocampal dentate granule cells 90 days 
after controlled cortical impact, which was associated with the 
development of posttraumatic epilepsy after TBI (Mtchedlishvili 
et al., 2010). Activation of GABAA receptors by ischemic 
preconditioning confers neuroprotection in rat organotypic 
hippocampal slices early after oxygen-glucose deprivation 
(OGD) injury (DeFazio et al., 2009). However, in the late phase 
of ischemic injury, the role of GABAA receptor differs from 
that in the early phase, as excessive tonic GABA activity in 
hippocampal interneurons late after stroke leads to impaired 
synaptic plasticity and memory deficits (Orfila et al., 2017). 
Selective inhibition of extra-synaptic α5-GABAA receptors by 
S44819 enhanced hippocampal synaptic plasticity and thus 
improved cognitive function in neurodegenerative disorders and 
facilitated long-term post-stroke recovery (Etherington et al., 
2017). Therefore, regulating GABA activity in the acute phase 
after ischemia is an important means by which damage incurred 
from acute brain injury can be minimized and also to enhance 
long-term functional outcome of patients with TBI and ischemic 
stroke. However, an association between GABA activity and 
ICH is still lacking and thus, warrants further investigation.

There are a number of anesthetic agents, such as midazolam, 
ketamine, volatile and intravenous anesthetics that have 
been found to decrease glutamate release or increase local 
concentrations of GABA after acute brain injury (Table 1) 
(Bickler et al., 1995; Sakai and Amaha, 2000; Lehner et al., 
2010). Midazolam (0.3-30 μM) inhibits glutamate release via 
the glial glutamate transporter (GLT-1) (Sakai and Amaha, 
2000), significantly increases the local concentration of GABA 
(0.75 mg/kg, i.p), and inhibits the expression of contextual fear 
in anxious rats (Lehner et al., 2010). Midazolam acts on the 
GABAA receptor and leads to spontaneous Ca2+ oscillation in 
cultured hippocampal neurons (Sinner et al., 2006). Propofol 
(0.5 µM) yields analogous potentiation of GABA-mediated 
currents, prevents the rise in reactive oxygen species (ROS), 
and inhibits intracellular release of apoptosis-inducing factor 
(AIF), thus preventing neuronal cell loss in rat brainstem 
slices (Ghezzi et al., 2017). By decreasing glutamate release 
and increasing local GABA concentrations, a variety of 
anesthetic agents, as described above, alter the glutamatergic 
and GABAergic tone in the brain after acute brain injury. 
Thus, regulation of glutamatergic and GABAergic tone may be 
important mechanisms by which anesthetic postconditioning 
exerts its neuroprotection against acute brain injury. 

3) Cortical spreading depression deteriorates neurological
outcomes of acute brain injury
Cortical spreading depression (CSD) is a slowly propagating 
(2-5 mm/min) wave of rapid, near-complete depolarization 
of neurons and astrocytes followed by a period of electrical 
suppression of a distinct population of cortical neurons (Dreier 
et al., 2017; Hartings et al., 2017). These events contribute to 
the progression of brain injury in humans. More specifically, 
CSD refers to the electrical silence of brain electrical activity 
following spreading depolarization (Lauritzen et al., 2011). 
Unlike a normal neuronal action potential, CSD induces 
a greater magnitude of extracellular potential shift, which 
continues for at least several minutes (Ayata and Lauritzen, 
2015). It commonly occurs in individuals with migraine, 
aneurismal subarachnoid hemorrhage (SAH), delayed ischemic 

stroke after SAH, malignant hemispheric stroke, spontaneous 
intracerebral hemorrhage, or TBI (Hadjikhani et al., 2001; 
Dohmen et al., 2008; Hartings et al., 2011; Lauritzen et al., 
2011; Dreier and Reiffurth, 2015).

The occurrence of CSD is usually followed by several 
distinct phases of secondary changes in CBF, an initial brief 
hypoperfusion, a marked but transient hyperemia, a later and 
smaller hyperemia, and a long-lasting oligemia. CSD can 
induce the release of glutamate, which later binds to NMDA 
receptors to further promote the influx of Ca2+ and Na+. CSD 
not only induces derangement of the ionic environment but 
it also elevates ATP consumption and imposes a considerable 
energetic burden on brain tissue (Shinohara et al., 1979; 
Kocher, 1990; Shibata and Suzuki, 2017), exacerbating tissue 
acidosis (Menyhart et al., 2017). In addition to neurons and 
astrocytes, it has been recently suggested that microglia also 
exhibit dramatic changes in activity in response to CSD, such 
as increased NMDA-dependent inward rectifying potassium 
conductance (Wendt et al., 2016), increased expression of major 
histocompatibility complex (MHC) class II antigen (Gehrmann 
et al., 1993), increased ROS production (Grinberg et al., 
2012), and increased secretion of IL-1β (Jander et al., 2001) 
and TNFα (Grinberg et al., 2013). With limited ATP supply, 
increased excitotoxicity and increased inflammation, CSD 
could contribute to the expansion of infarct volume and brain 
injury after cerebral ischemic stroke or TBI (Risher et al., 2010; 
Hinzman et al., 2015). After ischemic stroke, depolarization 
occurs spontaneously in the tissue surrounding the freshly 
developing ischemic infarct (i.e. ischemic penumbra), which 
is functionally and metabolically compromised. Peri-infarct 
depolarization (PID) refers to slow potential changes in the 
absence of electrocorticography (ECoG) background activity 
in ischemic stroke. PID usually occurs in brain tissue that is 
not yet irreversibly damaged, but this tissue damage may be 
augmented when PIDs appear in clusters after cerebral artery 
occlusion (Saito et al., 1997; Ohta et al., 2001). In contrast, 
negative slow voltage variations with simultaneous transient 
ECoG suppressions are signatures of CSD. The CSD/PID events 
can be detected over the course of 7 days after stroke. Lesion 
progression has recently been demonstrated by sequential MR 
imaging in a malignant stroke patient specifically in the zone 
experiencing 100 PIDs over a period of 5 days (Nakamura et 
al., 2010). Similar deterioration has recently been observed 
in subarachnoid hemorrhagic patients. Measurement of tissue 
oxygen partial pressure revealed progressive stepwise decline 
with subsequent CSDs within clusters (Bosche et al., 2010). 
These clusters of CSDs are associated with delayed ischemic 
neurological deficits (Dreier et al., 2006). Thus, it is well 
established that CSDs occur after the three most common 
acute brain injuries, with potentially devastating impact on 
neurological outcomes, and thus CSDs may well turn out to be 
an important mechanistic target for neuroprotection.

Fortunately, multiple anesthetic agents have been shown to 
effectively suppress CSDs. Some analgesics and sedative drugs, 
such as benzodiazepines and barbiturates (GABA receptor 
agonists), and ketamine (NMDA receptor blocker) have been 
shown to alter the susceptibility to and the course of spreading 
depolarization by regulating neuronal activity and synaptic 
transmission (Somjen, 2001; Sakowitz et al., 2009). The 
administration of ketamine reduces the occurrence of isoelectric 
spreading depolarization in patients suffering from TBI and 
malignant hemispheric stroke (Hertle et al., 2012). Inhalation 
anesthetics, such as isoflurane, are also suggested to suppress 
CSDs and improve recovery from the metabolically demanding 
CSD waves in neurocritical care patients (Takagaki et al., 
2014). Although GABAA receptor (GABAAR) antagonists 
can be sufficient to generate spreading depression, (Kohling et 
al., 2003), propofol, a GABAAR agonist, did not effectively 



Conditioning Medicine 2018 | www.conditionmed.org 247

Conditioning Medicine | 2018, 1(5):243-258 REVIEW ARTICLE

prevent the CSD event or the propagation rate of CSDs, which 
may likely be due to a ceiling effect (Aiba and Shuttleworth, 
2014; Takagaki et al., 2014). Therefore, attenuation of CSD 
may be an important underlying mechanism through which 
anesthetic postconditioning exerts its neuroprotective effect 
against acute brain injury. 

4) Neuroinflammation
Mounting evidence suggests that ischemic stroke, TBI, and ICH 
all inevitably cause neuroinflammation, which can be caused by 
the activation of resident glia cells or by infiltrating peripheral 
immune cells (An et al., 2014; Corps et al., 2015). Notably, 
unlike the primary brain injury itself, neuroinflammation can 
often cause extensive and lasting damage through a complex 
cascade of events, thus it is usually referred to as “secondary 
injury.” Importantly, the neuroinflammation, which can be 
detected during the subacute phase (≤ 3 weeks post-injury) by 
positron emission tomography imaging with the translocator 
protein radioligand [18F]PBR111 and diffusion tensor imaging, 
is suggested to correlate with chronic TBI deficits (Missault 
et al., 2018). The damage and pathogen-associated molecular 
patterns (e.g.alarmins) released from the injured brain interact 
with receptors on inflammatory cells, such as toll-like receptors 
(TLRs), nucleotide oligomerization domain-like receptors and 
scavenger receptors to initiate the inflammatory cascade after 
TBI, stroke, SAH and ICH (Jassam et al., 2017; PrabhuDas et 
al., 2017; Lu et al., 2018). It has been recently suggested that 
the inflammation that occurs in injured brains after acute brain 
injury may not always be detrimental to neurological recovery. 
There are various types of immune cells that can alleviate 
inflammation and promote the clearance of brain debris after 
acute brain injury, such as regulatory T cells, regulatory B 
cells, regulatory dendritic cells, M2-phenotype microglia, 
macrophage, and monocytes (Liesz et al., 2009; Ren et al., 

2011; Li et al., 2013; Hu et al., 2015; Jassam et al., 2017; Zhou 
et al., 2017a; Zhou et al., 2017b). 

Although the network of neuroinflammation is complex, 
sevoflurane and propofol, two commonly used general 
anesthetics, have been suggested to affect neuroinflammation 
after ischemic stroke and TBI. However the evidence regarding 
sevoflurane is conflicting. Propofol attenuates microglia-
mediated proinflammatory responses after ischemic stroke 
and TBI (Luo et al., 2013; Zhou et al., 2013; Zheng et al., 
2018). However, sevoflurane may either change microglia/
macrophage dynamics to promote brain repair after stroke 
or aggravate microglia-mediated neuroinflammation and 
exacerbate cognitive decline (Zhu et al., 2017a; Dang et al., 
2018; Dong et al., 2018). The direct effect of anesthetics on 
the inflammatory response of the brain is conflicting; however, 
these conflicting results may derive from the use of different 
treatment paradigms across studies. It still remains unknown 
how anesthetic postconditioning impacts the neuroinflammation 
after acute brain injury. Further investigation into the effect that 
anesthetic postconditioning have on neuroinflammation after 
acute brain injury are therefore warranted.

5) Free radical generation and mitochondria dysfunction
Acute brain injury produces high levels of ROS, which can be
lethal to neurons. In ischemic stroke, rapid depletion of energy
leads to a loss of membrane potential and depolarization,
activating voltage-gated Ca2+ channels, which release excitatory
amino acids, such as glutamate, into the extracellular space.
The binding of glutamate to NMDA and AMPA receptors
further deteriorates Ca2+ homeostasis, which accelerates the
collapse of electron transport chain complexes in mitochondria,
thus generating excessive ROS (Doyle et al., 2008). Excessive
ROS and Ca2+ activate calpain protease, which promotes
apoptosis and other forms of programmed cell death, primarily
through modification of proteins and lipids present at the
outer membrane of the mitochondria in a caspase-dependent
or caspase-independent manner (Perez-Pinzon et al., 2012).
Ischemia induces NAD+ depletion and compromises several
NAD+-dependent processes that may ultimately lead to cell
death (Khoury et al., 2018). Inhibiting the activation of protein
kinase C in the mitochondria by ischemic preconditioning can
induce ischemic tolerance by preserving mitochondrial pools of
NAD+ and nicotinamide phosphoribosyltransferase, an enzyme
involved in NAD+ production (Dave et al., 2011; Morris-Blanco
et al., 2014; Thompson et al., 2015). Increased ROS production
is also associated with axonal alterations after TBI, which
is characterized by diffuse axonal injury (Frati et al., 2017).
Similar to the ROS generation in ischemic neurons, increased
intracellular Ca2+ in the mitochondria produces excessive
ROS in the axons, causing swellings or varicosities along the
axons and terminal bulbs (Siedler et al., 2014). In intracerebral
hemorrhage, the initial hematoma induces glutamate release
and leads to mitochondrial dysfunction and ROS production
(Brunswick et al., 2012). Mitochondrial dysfunction leads to
insufficient ATP generation resulting in the failure of cellular
pumps causing cytotoxic edema and neuronal apoptosis (Kim-
Han et al., 2006). Thus, ROS is also an important common
pathological change that could be targeted to improve
neurological outcomes after acute brain injury.

Mounting evidence suggests that ROS generation can also 
be targeted by several anesthetics (Yu et al., 2015a; Bellanti et 
al., 2016; Wang et al., 2016e; Ghezzi et al., 2017; Shinjo et al., 
2018). Propofol has been proposed to protect cardiomyocytes 
and hepatic cells from oxidative stress presumably by reducing 
ROS production (Bellanti et al., 2016; Ghezzi et al., 2017; 
Shinjo et al., 2018). However, there are conflicting reports as 
to whether propofol increases ROS production and oxidative 
stress in developing neurons (Liang et al., 2018). Likewise, 

Table 1. Excitatory and inhibitory receptors targeted by anesthetic 
agents in acute brain injury.

NMDA, N-methyl-D-aspatic acid; AMPA, α-Amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid; GABA, γ-aminobutyric acid; Dex, 
Dexmedetomidine; TBI, Traumatic brain injury; ICH, Intracranial 
hemorrhage.
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evidence regarding the role of sevoflurane in ROS production 
is also conflicting. However, sevoflurane postconditioning is 
consistently protective against oxidative stress in multiple cell 
types (Yu et al., 2015a; Wendt et al., 2016). The discrepancy 
of the role of anesthetics in ROS production may due to 
differences in the experimental parameters, such as the dose 
and duration of anesthesia, as well as the disease models 
being investigated. How postconditioning of propofol or 
sevoflurane affects the underlying pathology of acute brain 
injury therefore warrants further investigation. Besides the 
aforementioned common features that are shared by different 
acute brain injuries, there are also some signaling cascades 
that may mediate the neuroprotective effects of anesthetic 
postconditioning after acute brain injury (Table 2).

3. Paradigms of anesthetic postconditioning that may
combat acute brain injuries
Although the formal term anesthetic postconditioning is
relatively new, the idea of using anesthetics to sedate patients
with acute brain injury has a long history, and has been
practiced in clinical settings for many years. Anesthesia-induced
pharmacological coma is a common approach used in the
intensive care unit to treat refractory intracranial hypertension
(Vutskits, 2014). A variety of anesthetics have been shown to
have neuroprotective effects against TBI, such as propofol,
pentobarbital, and sevoflurane. Pentobarbital is a commonly
used sedatives used to decrease cerebral oxygen consumption
in the acute phase of TBI (Carney et al., 2017). Pentobarbital
infusion changes the metabolomics of TBI patients compared
to TBI patients who did not receive pentobarbital (Wolahan et
al., 2018). Pentobarbital coma used in TBI patients could help
to maintain higher cerebral perfusion pressure and is associated
with a higher 1 year-survival rate in patients with severe TBI
and refractory intracranial hypertension (Marshall et al., 2010).
However, it is important to be cautious of the fact that arterial
hypotension could be observed with barbiturates (Roberts and
Sydenham, 2012), bolus of midazolam (Papazian et al., 1993)
or bolus of opioids (Albanese et al., 1999). Control of system
hemodynamics is of great importance for acute brain injuries,
such as TBI and ICH, especially for those whose intracranial
compliance is compromised (Helbok et al., 2012). It was shown
that the daily interruption of sedation or neurological wake-up
test might cause cerebral hypoperfusion and raise intracranial
pressure. This can lead to an imbalance of energy supply and
demand, especially for the injured brain, and can increase the
risk for metabolic distress and brain tissue hypoxia (Helbok et
al., 2011; Helbok et al., 2012). Overall, the current guidelines
on sedation and analgesia in the intensive care unit should be
extended to stabilize brain injury patients (Barr et al., 2013).
Using clinical scores and protocols to manage sedation and
analgesia may provide neurological benefits and reduce the risk
of over sedation and hemodynamic instability (Egerod et al.,
2010; Yu et al., 2013).

Since 2003, when the idea of anesthetic postconditioning 
was first introduced, a lot of studies on inhalation anesthetic 
postconditioning and propofol-induced postconditioning have 
been published involving a variety of conditioning paradigms.

1) Inhalation anesthetic postconditioning
Anesthetic postconditioning can be achieved by administration 
of 1 minimum alveolar concentration of sevoflurane for only 
2 minutes or 2% of isoflurane for 15 minutes at the onset of 
ischemic reperfusion in a rat myocardial ischemia model (Obal 
et al., 2003; Feng et al., 2005; Lucchinetti et al., 2005; Obal 
et al., 2005). In the brain, anesthetic postconditioning was 
first introduced in 2008 in a study in which 2% isoflurane was 
applied for 30 minutes starting 10 minutes after OGD in brain 
slices or maintained under anesthesia with 2% isoflurane via 

an endotracheal tube for 60 min in a middle cerebral artery 
occlusion (MCAO) rat model (Lee et al., 2008).

2) Propofol-induced postconditioning
Propofol postconditioning at doses of 10 or 20 mg/kg/h infusion 
rate at the onset of reperfusion for 30 minutes could provide 
not only early neuroprotection but also long term (28 days after 
reperfusion) neuroprotection in transient MCAO rats (Wang 
et al., 2009; Wang et al., 2011). Variations in the protocols of 
anesthetic postconditioning are listed in Table 2.

4 . Advances  in  anesthes io logy  br ings  anesthet ic
postconditioning to a new era

1) Development of anesthetic agents
In the past two decades, both anesthetic agents and anesthetic 
delivery systems have experienced evolutional changes. New 
formulations of existing agents and new chemical entities have 
been developed to improve safety, predictability, efficacy, onset 
and recovery profile and to minimize side effects. Currently, 
some general anesthetic agents that are used in routine clinical 
practice have been tested in anesthetic postconditioning, 
including propofol, sevoflurane, and isoflurane. In addition, 
some newly developed anesthetic agents are proving to be good 
candidates for anesthetic postconditioning because of their 
unique pharmacological properties. 

Remimazolam is a new, fast- and short-acting, ester-based 
anesthetic agent targeted for procedural use in the United States. 
It was initially developed for the sedation of adult colonoscopy 
patients (Borkett et al., 2015). It combines the properties of 
two unique drugs already established in anesthesia, midazolam 
and remifentanil, acting on both GABA receptors, as does 
midazolam, and exhibiting pharmacokinetic properties common 
to the ester-based opioid remifentanil, thus achieving a more 
rapid onset and faster recovery. Because it is primarily cleared 
by tissue esterase enzymes, accumulation should not occur after 
infusion as it has a relatively short context-sensitive half-life of 
7-8 minutes (Wiltshire et al., 2012).

Xenon, which was first administered to humans in 1951
(Cullen and Gross, 1951), has been suggested as an important 
neuroprotective agent. It offers the lowest blood gas partition 
coefficient of any anesthetic, is non-flammable, non-teratogenic, 
and has a minimal effect on the cardiovascular system. 
Importantly, it has no deleterious effects on neurocognition in 
non-human primate models (Derwall et al., 2008; Chakkarapani 
et al., 2012). With the above advantages and a faster emergence 
than both inhalation and propofol anesthesia (Law et al., 
2016), it may have great translational potential as an anesthetic 
postconditioning agent.

2) Advances in anesthetic drug delivery system
Innovations in computer technologies have fostered the
development of new anesthetic drug delivery systems, such
as target-controlled infusions (TCI) (Figure 2), closed-loop
drug delivery systems, and computer-assisted personalized
sedation systems. With TCI, intravenous drugs are delivered
based on computer models, with the goal of achieving a defined
or target drug concentration at a specific site (Absalom et al.,
2016). TCI is now widely used in clinical practice to administer
propofol and opioids for sedation and general anesthesia to
millions of patients each year (except in the USA). It was
designed to overcome the anesthetic accumulation in the tissue
during drug delivery by adjusting the infusion rate based on
patient characteristics (weight, height, age, sex, and additional
biomarkers) to achieve and maintain a steady-state drug
concentration in the plasma or target site (Struys et al., 2016).
There are now two types of TCI systems, open loop system
and closed-loop system. The open loop system infuses drugs
based on the drug library incorporated in the device but lacks
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Table 2 Anesthetic postconditioning protocols and related signaling pathways.

M, male; F, female; SD rats, Sprague-Dawley rats ;TBI, traumatic brain injury; MCAO, middle cerebral artery occlusion; MAC, minimum alveolar concentration; CA, cardiac 
arrest; HI, hypoxia-ischemia; CRMP2, Collapsin response mediator protein-2; DIOA,[(dihydroindenyl)oxy] alkanoic acid; OGD, oxygen-glucose deprivation; GRP78, glucose-
regulated protein-78; CHOP, C/EBP-homologous protein; Phospho-Nrf2, Phosphorylated nuclear factor-erythroid 2-related factor 2; Akt, protein kinase B; NQO1, quinine 
oxidoreductase1; HO-1, hemoxygenase-1; PI3k, phosphatidylinositol-3-kinase; TLR-4, toll-like receptor-4; NF-κB, nuclear factor kappa B; E2, serum estradiol-2; IL-6, 
interleukin-6; β-AP, beta-amyloid protein; TNF-α, tumor necrosis factor-α; eNOS, endothelial nitric oxide synthase; MMP-9, matrix metalloproteinase-9; AQP-4, aquaporin-4; 
pJNK, phosphorylated c-Jun N-terminal kinase; KCC2; potassium chloride co-transporter 2; PKMζ, protein kinase Mζ; TGF-β, transforming growth factor-β; ERK1/2, extracellular 
signal regulated kinase1/2; LRP, lipoprotein receptor-related protein ; AQP4,Aquaporins4; BMP4, bone morphogenetic protein 4.



REVIEW ARTICLE

Conditioning Medicine 2018 | www.conditionmed.org

Conditioning Medicine | 2018, 1(5):243-258

250

real-time feedback from the patient. The closed-loop system 
monitors hypnosis to determine a new input to the system 
(Hemmerling et al., 2013). Compared to the open-loop system, 
the closed-loop system offers advantages of precise dosing, less 
workload, better control of sedation or anesthesia depth, less 
drug consumption and improved hemodynamic stability. These 
new innovations in anesthetic agents and drug delivery have the 
potential to advance the field of anesthetic postconditioning to 
more widespread use to treat acute brain injury.

Concluding remarks
Finally, we would like to concede that most of our knowledge 
on anesthetic postconditioning in acute brain injury is derived 
from animal models. However, considering that anesthetic 
agents are already being widely used for general anesthesia and 
sedation, the clinical translation of anesthetic postconditioning 
is particularly promising. This is especially true with the 
advances in anesthesiology, which brings safer and easier 
controllable anesthetic agents and drug delivery systems to 
patients’ bedside. Large-scale clinical trials will be needed 
to verify the effectiveness of anesthetic postconditioning in 
different types of acute brain injury. 
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